• 返回主站
  • 联系我们
  •  
    首页 ->数学教学与思考 -> 英国的海岸线有多长——极限的应用

    英国的海岸线有多长——极限的应用

    撰稿:数学教研室  审核:陈梦实  来源:科学  更新时间:2015/11/17 16:17:14  点击数:5782 

          1967年法国数学家B.B.Mandelbrot提出了“英国的海岸线有多长?”的问题,这好像极其简单,因为长度依赖于测量单位,以1km为单位测量海岸线,得到的近似长度将短于1km的迂回曲折都忽略掉了,若以1m为单位测量,则能测出被忽略掉的迂回曲折,长度将变大,测量单位进一步变小,测得的长度将愈来愈大,这些愈来愈大的长度将趋近于一个确定值,这个极限值就是海岸线的长度。 

          答案似乎解决了,但Mandelbrot发现:当测量单位变小时,所得的长度是无限增大的。他认为海岸线的长度是不确定的,或者说,在一定意义上海岸线是无限长的。为什么?答案也许在于海岸线的极不规则和极不光滑。我们知道,经典几何研究规则图形,平面解析几何研究一次和二次曲线,微分几何研究光滑的曲线和曲面,传统上将自然界大量存在的不规则形体规则化再进行处理,我们将海岸线折线化,得出一个有意义的长度。 

          可贵的是Mandelbrot突破了这一点,长度也许已不能正确概括海岸线这类不规则图形的特征。海岸线虽然很复杂,却有一个重要的性质——自相似性。从不同比例尺的地形图上,我们可以看出海岸线的形状大体相同,其曲折、复杂程度是相似的。换言之,海岸线的任一小部分都包含有与整体相同的相似的细节。要定量地分析像海岸线这样的图形,引入分形维数也许是必要的。经典维数都是整数:点是0维、线是1维、面是2维、体是3维,而分形维数可以取分数,简称分维。 

          Mandelbrot毕业于巴黎工学院,获得理科硕士学位,后在巴黎大学获得数学博士学位。他是一个爱思索“旁门左道”问题的人,擅长形象地图解问题,博学多才。1973年他在法兰西学院讲课期间提出了分形几何的思路,1975年当Bill.Gates与qb创业时,他提出了分形(Fractal)术语,1983年出版《自然界的分形几何》,分形概念迅速传遍全球。 

          我们把具有某种方式的自相似性的图形或集合称为分形。自相似性就是局部与整体相似,局部中又有相似的局部,每一小局部中包含的细节并不比整体所包含的少,不断重复的无穷嵌套,形成了奇妙的分形图案,它不但包括严格的几何相似性,而且包括通过大量的统计而呈现出的自相似性。 

          当屏幕上出人意料的图案出现时,原本作为研究分形工具的计算机给我们打开了一扇梦幻新天地,以假乱真的模拟图象、亦真亦假的虚幻境界是否能激起你创作的灵感?

          (未完待续)

    上一篇: 数学——逻辑思维的锻炼
    下一篇: 大学数学教学:授课教师要注意解决三方面问题
    相关链接:
    没有相关链接!
    打印本页〗〖关闭本页